What we are expecting from this presentation:

We want to inform you on the most important highlights from this topic

We need you to take the time to explore the presentation carefully and with a critical mind

B

We would like you to write down every comment or idea that emerges while reading this presentation

We exhort you to share with us a constructive feedback for further improvements

We invite you to dialog with us if you have any doubt or want to dive into some specific aspects

Rapid Prototyping

- What is Product Lifecycle Management (PLM)?
- Rapid Prototyping: Definition, Benefits & Applications
- New Technologies in Rapid Prototyping
- Rapid Prototyping Technologies market and actual players
- Current and future applications for Rapid Prototyping
- Drivers and limitations for implementing Rapid Prototyping
- Takeaways & Main Conclusions

Product Lifecycle Management (PLM) is the process of managing product-related conceptualization, design, production and maintenance information. The benefits of PLM focus on time, cost and quality

Conceptualization

Design

Manufacturing

Service

Imagine – specify – plan – innovate

- Definition of product requirements taking into account:
 - Customers
 - Company
 - Market

Describe – define – develop – test – analyze

- The detailed design and development of the product starts
- Testing is performed throughout the whole design

Product Validation

- Process of evaluating the current product during the design phase
- Determine whether it satisfies business and consumer requirements

Build – make – produce – sell – deliver

 The choice of manufacturing methods and planning on equipment can begin even before the final design validation

Use – operate – support – support – replace – sustain

 This phase involves the use of product information, such as documentation, help and support

Product Validation (PV) is a long phase during the product lifecycle management, improvements on it means a more efficient and faster PLM

Considerations for PV

Clients don't know what they really want until they see a physical design

- The costs in prototyping increase due to redesign requests
- constant changes during product validation

technologies are very

Today, prototype

expensive

Projects are delayed by the

 Improvements means better results for both company and customers

PV Conventional and Ideal Implementation

Conventional Implementation

- Many design iterations
- Numerous physical prototypes
- Expensive and time consuming
- Use of old technologies

Ideal Implementation

- Precise, robust digital design
- Few physical prototypes
- Efficient employment of resources
- Increased efficiency through better planning.

Maintaining agility during a PLM implementation and adopting a strategy that embraces a more iterative and collaborative solution design approach, has significant benefits and can lead to more optimal PLM solutions

Different design tools are used to physically validate fidelity, cost and usage of the design; mockups and functional prototypes are the most common in the automotive industry

Design Tools

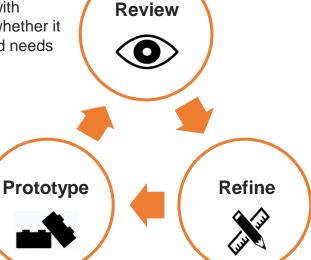
- Wireframes model layout, behavior and interactions (wireframes and mockups can be worked in parallel)
- Prototypes build upon mockups and/or wireframes they are closer approximations of the products
- Functional Prototypes behave like the real product but may have limited functionality
- Mockups use graphics, styling guide and look like the end product

Attributes

Prototype	Fidelity	Cost	Use	General traits
Wireframe	Low	\$	Documentation & quick communication	Sketchy (black, white & gray)
Prototype and functional prototype	Middle to High	\$\$\$	User testing (reusable)	Interactive
Mockup	Middle to High	\$\$	Gathering feedback and getting buy in from stake-holders	Static visualization

Interactive prototypes allow users to identify potential issues and mitigation plans early on in the design process

Rapid Prototyping (RP) allows for quick design iterations to test different attributes, the objective is to save time and money compared with the conventional prototyping techniques


What is Rapid Prototyping?

Rapid Prototyping

- The process of quickly mocking up the future state of a system for validation
- Allows quick validation from users, stakeholders, developers and designers
- Doing this rapidly and iteratively generates feedback early in the process, improving the final design and reducing the need for changes during development

The Rapid Prototyping Process

Sharing the prototype with stakeholders and validating whether it meets their expectations and needs

Based on feedback, identifying areas that need to be refined

Benefits of Rapid Prototyping

- Allows agile adaptation to evolving requirements
- Consistently engages key stakeholders throughout the project
- Decreases product development time
- Saves resources and time, validating exhaustively before building functional products
- Demonstrates requirements with functioning prototypes instead of theoretical designs

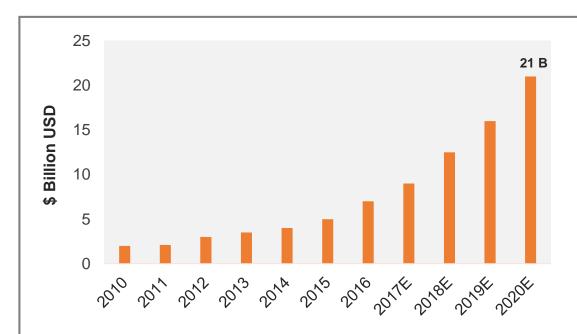
Source: Stratasys Co.

Converting

requirements into physical mock-ups

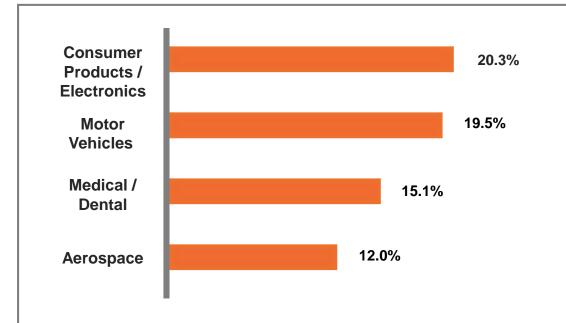
Principal Rapid Prototyping Techniques

Cost-effective Time **Technique** Materials Available (approx.) (approx.) Nylon, TPU, Steel, TPU, PEI, Large quantities PPS, PP, ABS, Acrylic, PU, TPE, 15 days (per Injection molding (1000 pieces or PC, PBT, HIPS Tungsten, Cobalt mold) more) chrome, Aluminum, Nickel ABS, Aluminum, Cobalt chrome, 3D Printing Low quantities Digital photopolymer, Inconel, (Additive (50 pieces or 3-5 days Nylon, PC, PP, Stainless steel, less) Manufacturing) Titanium Aluminum, Nylon, Stainless steel, **CNC Machining** Low quantities Steel, Titanium, Wood, MDF, (milling, turning, (200 pieces or Plexy glass, PVC, Brass, Cooper, 3 days grinding, EDM, Ceramic, Hastelloy, Molybdenum, less) ECM) Tungsten, Kovar,


Rapid Prototyping in the Different Industries

Industry	Common Applications	Technologies Used
Automotive	Custom interiorsPanelingConcept car framesSpare parts	 3D Printing Investment Casting
Aerospace	 Wind tunnel components Liquid and fuel tanks Surrogate parts 	 3D Printing Investment Casting CNC Machining
Medical	Anatomical modelsMedical cartsSurgical tools	 3D Printing CNC Machining
Energy	RotorsTurbine nozzlesControl-valve components	 3D Printing CNC Machining

*EDM: Electrical Discharge Machining. **ECM: Electromechanical Machining

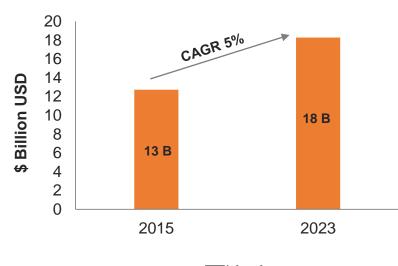

Source: Proto Labs Inc.

RP Revenue

- The Rapid Prototyping revenue reached \$7 B USD in 2016
- According to IBIS World is expected to reach \$21 B USD in 2020
- This means a rapid growth market for investment

Leading Industries Implementing RP

- Motor vehicles is the second industry where rapid prototyping is being implemented
- Many automotive companies are currently using new techniques for prototyping
- Some examples of these companies are Ford, Volkswagen and BMW


Source: IBIS World OD4581

3D Printing

Global market generated \$5 B USD in 2015 Projected to reach \$33 B USD by 2023 35 30 25 **\$ Billion USD** 20 33 B 15 10 5 5 B 0 2015 2023

CNC Machining Market

- Global market generated \$13 B USD in 2015
- Projected to reach \$18 B USD by 2023

- CNC Machining market was 247% bigger than 3D Printing market in 2015
- AM is projected to grow so fast and could reach \$33 B USD by 2023, 179% bigger than CNC market
- The rapid growth in AM market is due to the new technologies that are being developing in this area

Source: Markets & Markets

The Rapid Prototyping industry remains nascent but has been growing in the past 5 years, it attracted investment from consolidated companies in an attempt to capture the relatively untapped and expansive market

Major Companies have been approached Rapid **Prototyping** through acquisitions

Most of this

Companies

materialise

innovators you can count on

11 Source: Capstone Partners LLC

We identified some of the Start-ups acquired during this same period

Acquirer Target		Target	Description	Enterprise value (M)	Revenue
Sunningdale Tech	-0	First Engineering	Manufactures ultra-precision molds and plastic injection molded components for performance-critical engineering applications.	\$80.00	.6x
Riverside	2	Fisher/Unitech	Provides Product Lifecycle Management (PLM) technology solutions to manufacturing companies including 3D printing and rapid prototyping.	-	-
Stratasys		Solid Concepts	Provides additive manufacturing/3D printing, rapid prototyping, tooling and injection molding services in North America and internationally.	\$190.00	2.9x
Coral		Tatra Plastics Manufacturing	Designs, manufactures and prototypes round, oval and square plastic tube and profile extrusions, co-extrusions and injection moldings.	\$4.20	.8x
Truelife	(Pro CNC	Provides production CNC machining, prototype machining, prototyping, 3D printing, contract assembly and engineering services.	-	-
Alcoa		RTI International Metals	Offers a portfolio of titanium mill products, extruded shapes, formed and 3D-printed parts, as well as high speed machined components.	\$1490.60	1.9x
Proto labs	pl	FineLine Prototyping	Provides precision prototyping and manufacturing services including stereo lithography, selective laser sintering and 3D printing services.	\$37.00	3.8x
Dassault systemes	35	Realtime Technology	Provides 3D visualization software, consulting and creative services.	\$232.50	2.3x
Laird	Laird	Model Solutions	Engages in prototype model making and quick-turn tooling and production of injection molded parts in South Korea.	\$67.60	2.2x

Source: Capstone Partners

Three important automotive companies that are currently using Rapid Prototyping processes are Ford, Volkswagen and BMW according to them the use of these technologies saved millions of dollars to their companies

FORD

VOLKSWAGEN

BMW

Where are using Rapid Prototyping?

For prototypes of components such as cylinder heads, intake manifolds, and air vents On Ford GT, designers used a series of prototypes to refine and perfect the square shaped F1style steering wheel

Benefits

The company saved millions of dollars in product development costs

Cut down on the time that would usually be required to create investment castings

For an engine manifold, developing and creating the prototype usually costs about \$500,000 USD and takes about 4-5 months with traditional methods, using AM, Ford developed multiple iterations of the component in just four days at a cost of \$3,000 USD

Where are using Rapid Prototyping?

Volkswagen Auto-Europa use Ultimaker 3D Printers to fabricate components inhouse Development of tools like: position and screw assembly, liftgate badge, triangular window gauge, etc.

Benefits

The company Improve tool obtained a 95% ergonomics by 28% reduction in and the final product development time and a 91% drop in costs

The implementation of 3D printers in Volkswagen Autoeuropa allowed the company to produce 93% of all previously mentioned outsourced tools inhouse. This adds up to an estimated \$171,090 in savings for 2016 and a target of \$285,150 in savings for 2017

Where are using Rapid Prototyping?

Making of components and hand tools used in testing and assembly BMW Formula One department introduce rapid prototyping to test new components for races

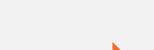
Benefits

The use of new technologies of AM help to solve problems with prototypes quickly

AM give better ergonomic design and was 72% lighter than traditional hand tools

The customized tools helped save 58% in overall costs and reduce project time by 92%

13


URBEE is an electric car with as many as fifty additive manufacturing produced parts

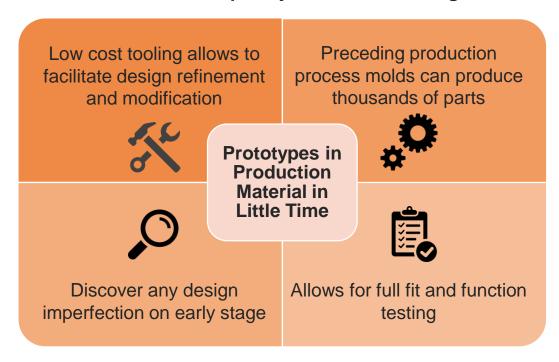
URBEE 2011

- Built external frame comprised of 20 separate panels built through rapid prototyping
- Partnered with a major rapid prototyping service in production of the frame
- Used design and simulation software

URBEE 2 2015

- 3D printed interiors in addition to the external body
- More parts 40 50 major body and interior parts are 3D printed
- Greater complexity of parts which cannot be produced through traditional manufacturing methods

Source: Korecologic


Speed **Rapid Tooling New Materials Distance Manufacturing Accuracy Production of** Development of non-Faster computers, **Improvements** You can remotely submit polymeric materials more complex in laser optics molds quickly (metal, ceramic, control systems, and motor designs for using rapid and improved prototyping control immediate etc.). materials manufacture technologies The materials The introduction of new materials would allow have big RP users to produce functional parts influence in the time to complete Plastic prototypes work well for visualization a prototype and fit tests, but they are often too weak for function testing

ML

What is Rapid Tooling?

Rapid Tooling describes a process that is the result of combining Rapid Prototyping techniques with conventional tooling practices to produce a mold quickly or parts of a functional model from CAD data in less time and at a lower cost relative to traditional machining methods

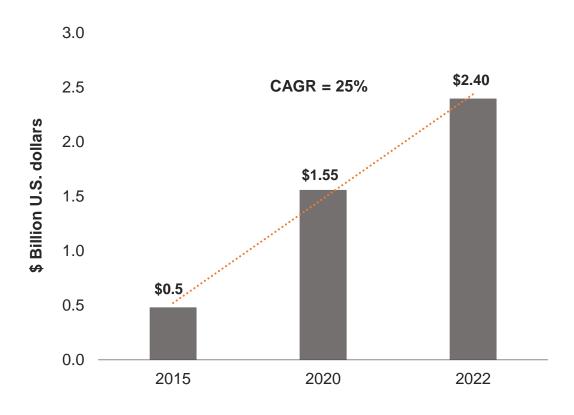
Benefits of Rapid Injection Tool Molding

Types of Rapid Tooling Techniques

Direct Tooling	Resin tools, metal powder, ceramic powder, micro cast tools, laminated tools		
In divert Tealing	Soft tooling	Silicon molds, castable resin, RTV process	
Indirect Tooling	Hard tooling	Spray metal tooling, cast metal tooling, keltool tooling	
Pattern for casting	Investment casting, sand casting		

Tools in Automotive Industry

Typical car uses up to 3,000 tools for production. Tools may range from small components which require a \$5,000 USD tool to more than \$1 M USD for a complex mold for a part such as a front fascia. A complete fascia itself may consist not only of the main plastic part but also 35 additional tools



Global Tooling Market

- Across the last 5 years the global tooling market have had an slightly decrease
- With the introduction of Rapid Prototyping technologies is expected an increase in this market

AM Market in Tooling

- Additive Manufacturing is one of the main Rapid Tooling technologies, is projected to reach \$2.5 B USD in 2022
- The high CAGR expected means good opportunities for investors and companies

Source: Harbour Results Inc & Statista

Takeaways

3D Printing and CNC Machining market is growing fast

 Costs to acquire a Rapid Prototyping machine are accessible and are expected to falling in the next years

Rapid Prototyping market is having an exponential growth

 The materials available for 3D Printing are growing, this means more opportunities on the manufacturing industry

 CNC Machining can give a high level detail but the pieces need to have a medium level of complexity

"We really didn't understand the potential of what the capabilities of this process were going to be. It's incredible"

Roy Raymer - Project Coordinator. Rapid Manufacturing. Ford Motor Company

M L A B®